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Phase separation in coupled chaotic maps on fractal networks
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The phase ordering dynamics of coupled chaotic maps on fractal networks is investigated. The statistical
properties of the systems are characterized by means of the persistence probability of equivalent spin variables
that define the phases. The persistence saturates and phase domains freeze for all values of the coupling
parameter as a consequence of the fractal structure of the networks, in contrast to the phase transition behavior
previously observed in regular Euclidean lattices. Several discontinuities and other features found in the
saturation persistence curve as a function of the coupling are explained in terms of changes of stability of local
phase configurations on the fractals.
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Coupled map lattices have provided fruitful and compu-longitudinal factor of 2, and which are now labeled by
tationally efficient models for the study of a variety of dy- (a5 ...a,a,.1), Where the firsth symbols of the se-
namical processes in spatially distributed systédis The quence are the same as the parent cell. Given this construc-
discrete-space character of coupled map systems makes théon rule, the fractal dimension of the GSG ik=log(d
specially appropriate for the investigation of spatiotemporai1)/log2. A label (;a,...a,) can be written as
dynamics on nonuniform or complex networks. Phenomenaaia; . . . a,_sap_o.,) for somese{1,2,...n}, where
such as pattern formation, spatiotemporal intermittency, none; means the sequence sidentical symbolse; . The cell
trivial (_:ollective .beh.avior, synchronization, etc., have beenyith this label has a neighborhoo’ﬂ(alaz...an) with d+1
e s et o Teement labeled b ..o ()] (12,

' ' ' and (@ ...an_sr1a,_g), Where the additiony;+j is de-
graphs[5], small-world networks[6], and scale-free net- fined as moduloq+1). If s=n, then the cell is one of the

works[7]. ) n .
Recently, there has been much interest in the study of thdJr 1_vert|ces of the_gasket, labeled by, and it has o_nly
neighbors belonging to the same parent cell. An integer

phase-ordering properties of systems of coupled chaoti¢ o n_ ;
maps and their relationship with the Ising models in statisti-mdex’ i=0,1,...,d+1)"=1, can be assigned to each cell

cal physics[8—14]. These works have invariably assumed ‘ifztf}e Iatti(;e alt :ﬁg level of construction by the rulei
the phase competition dynamics taking place on a uniform- m=1%m( + ) - ) e
The equations describing the dynamics of the diffusively

Euclidean space; however, in many physical situations the led defined h f | K
medium that supports the dynamics can be nonuniform oGOUPl€d map system defined on these iractal networks at

some length scales. The nonuniformity may be due to thdevel of constructiom, embedded in d-dimensional Euclid-
intrinsic heterogeneous nature of the substratum, such as p8§m space, are
rous or fractured media, or it may arise from random fluc-

tuations in the medium. This paper investigates the phenom- Xra(@y ... ap)

enon of phase ordering in coupled chaotic maps on fractal E

networks as a model for studying this phenomenon on non- =(1-e)f(X(ay...an))+—

uniform media. The class of fractal networks being consid- d+1

ered corresponds to generalized Sierpinski gaske8G

embedded in Euclidean spaces of arbitrary dimendi¢a]. X Z fX(B1...Bn) D

In particular, this model of coupled maps on fractal networks (B Pr)eMay...ay)

yields a situation to explore the role that the connectivity of

the underlying lattice plays on the statistical properties ofwherex;(«; . .. @) gives the state of the celby . . . «,,) at

phase ordering processes in nonlinear coupled systems. discrete timet; («;...«,) and (B;...8,) label the €
Deterministic fractal networks, such as GSG, can be gen+1)" cells on the gasket¢ is a parameter measuring the

erated in anyd-dimensional Euclidean space as follofd.  coupling strength between neighboring sites, &) is a

At the nth level of construction, the fractal consists Nf  nonlinear function that expresses the local dynamics. Equa-

=(d+1)" d-dimensional hypertetrahedral cells whose coor-tion (1) also applies to thed+1) vertex cells of the fractal

dinates can be specified by a sequenegy;, . . . ,), where  network, except that the coefficient of the sun¥isl, since

an can take any value in a set di+1 different symbols each of these cells hawkneighbors.

which can be chosen to §6,1, . . . d}. Atleveln+1, each As local dynamics, we assume a piecewise linear, odd

cell (aqay ... «a,) splits intod+1 cells scaled down by a map[10]
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FIG. 1. Persistence probability as a function of time for the
Sierpnski gasket embedded in Euclidean dimensiea3 for dif-
ferent values of the coupling. The lattice size isN=4°. Dotted
curves correspond to values efor which P, reaches its saturation
value quickly.

—2ul3—pux if xe[—1,—1/3],
f(x)=1 ux if xe[—1/3,1/3, ) FIG. 2. Phase separation on the GSG embedded in Euclidean
. dimensiond=3 at a level of construction=3, for several values
2pul3— pux if xe[1/3,1], of the coupling. The darklight) color corresponds to the positive
(negative phase. Arrows signal local configurations described in

] ) ) the text.(a) €=0.20, (b) €=0.26, (c) €=0.36, (d) e=0.72.
which for =3 becomes the chaotic map introduced by

Miller and Hus€[8]. When the parameter €[ 1,2], the map The domains formed by the two phases on fractal lattices
possesses two symmetric chaotic attractors contained in threach a frozen configuration for all values of the coupling
intervalsl * =[ = u(2— u)/3,+ u/3], and separated by a gap e<[0,1]. Figure 2 shows the asymptotic patterns of the
1°=[—u(2—w)/3,u(2— wu)/3]. For values ofu close to 2, phase separation process on a GSG embeddeb=i8 at
the size of the chaotic intervals is larger than the gap. Thefevel of constructionn=3, for several values of the cou-
the local states have two well-defined symmetric phases thgiling. Note that the configuration of the blocked phase do-
can be characterized by spin variables defined as the sign afains changes as the coupling is varied. The domain con-
the state at time, o(«y . .. an)=sigMx(ay .. . ay)]. figurations can be characterized by the fraction of sites in a
To study the phase-ordering phenomenon of the couplediven phase that haveneighbors in that same phase at time
maps on fractal networks, we fix the local map parameter at, denoted byF(k), with k=0,1,...d+1. For example,
the valuep=1.9 and set the initial condition as follows: if consider the pattern displayed in Fig@aRwhere there are
the number of cellsd+1)" in a lattice is even d odd), several sites in one phase, as those indicated by arrows, hav-
exactly one half of the sites are randomly chosen and arang all of their four neighbors in the opposite phase. Thus,
assigned random values uniformly distributed on the intervathe asymptotic fractiofr..(0) is greater than 0 in this case.
I ™, while the other half are similarly assigned valueslon  In Fig. 2(b), ase increasesF.(0) becomes 0, but.(1) is
If the number of cells in a lattice is oddl (even), then the finite, since there are sites in one phase, as those signaled by
state of the remaining cell is assigned at random on eithearrows, having just one neighbor in that same phase.
interval | * or | ~. The relationship between the asymptotic behavior of the
The statistical properties of the phase-ordering process opersistence and the frozen domain configurations on fractals
the fractal networks can be characterized by using the pebecomes manifest in Fig.(8, which shows the saturation
sistence probability?;, defined as the fraction of cells that value of the persistenc®,., as well as the fractions..(0),
have not changed sign up to timgL5]. Figure 1 show®; as  F..(1), andF..(2) as functions of the coupling parameter for
a function of time for the GSG embeddeddn-3, for sev- the GSG embedded in Euclidean dimenstn3. Several
eral values of the coupling parameter. For some ranges of thdiscontinuities are observed in the curveRf in Fig. 3a).
coupling, the persistence saturates in a few iterations, whil@he first discontinuity ofP,, occurs at the value of the cou-
for some other ranges af, P, reaches its saturation value pling €,=0.24 where the fractiof..(0) vanishes. This im-
more slowly. In contrast, in regular Euclidean lattices theplies that local blocked configurations where a site has no
persistence saturates for small couplings, while it decays ahkeighbors in its same phase, as those indicated in Fay, 2
gebraically in time for coupling strengths greater than soméecome unstable at the value of coupliag. The second
critical value[10]. discontinuity of P,, takes place at the value of coupling
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FIG. 4. G, as a function of for GSG embedded in differemwt
Dashed lined=2; continuous lined=3; dotted line:d=5; circle
line: d=11. Sizes are the same as in Fig. 3. Dotted-dashed line
represent$s; for a two-dimensional regular lattice [9).

the opposite phase. The number of those configuratiods is
=nint (d+1)/2], where nintk) roundsx to its nearest inte-
ger. Thesel discontinuities take place at increasing values of
the couplinge, for which the asymptotic fraction§..(k)
vanish, withk<J. The first discontinuity is related to the
vanishing of the fractiorr..(0) at the values,=0.24, inde-
pendent of the embedding dimensidnThis independence is
due to the presence of the normalization fact#() ! in
the coupling term in Eq(1) for all the lattices. For embed-
ding dimensionsl odd, there occurs a minimum &f, when
the fractionF..(J) becomes 0. In those cases the local con-
FIG. 3. (a) Left scale: saturation persistenBe as a function of ~ figurations losing stability are those consisting of a site with
€ for the GSG embedded in Euclidean dimensien3, represented half of its neighbors in one phase and the other half in the
by the thick dark line. The values, ,€; ,€,, andepa are indicated  opposite phase. These local configurations are symmetric, in
by dotted vertical lines. Right scale: fractiéh(k) vs e. Circles,  the sense that a change of phase of that site does not alter the
F..(0); triangles, F..(1); squares,F.(2). The lattice size isSN  phase composition of its neighborhood. These symmetric
=4°% (b) P., as a function ofe for GSG embedded in different configurations cannot happen in GSG associated ¢ven,
Euclidean dimensionsl. Continuous |ine:d:2, N:3ll; dotted and for those networks the minimum wa coincides with
line line: d=5, N=6'; dashed lined=7, N=8°% circle line:d  {he |ast discontinuity that takes place when(J—1) van-
=11, N=12. The first discontinuity ak,=0.24, common to all ishes.
lattices, is indicated. Note that for each fractal lattice there is a value of the
coupling €.« Where a maximum ofP., is observed. The
€,=0.30 where~. (1) becomes 0, and it is related to the 0SS origin of such maximum can be analyzed through the aver-

of stability of local frozen domain configurations as thoseage fraction of neighboring pairs that have opposite phases at
signaled in Fig. ). In addition,P.. reaches a minimum at time t, defined as

the value of couplinge,=0.36, where the fractior,.(2)
decays to 0. Foe> ¢,, the domains of the two phases grow 1 N
in size, as seen in Figs(@ and 2d). The phase domains G=1- —— 2 S(o(i),04(})) |, ®)
also form faster, reducing the number of phase switching of N(d+1) =1\ j<x;
the elements and, therefore, producing an increment in the
saturation valued,, up to a maximum occurring a,.x  Where  8(o(i),o¢(j))=1 if oi(i)=0a(j), and
=0.72. 8(a(i),0:(j))=0 otherwise. In Fig. 4 we sho/s; as a

A similar behavior is observed for all the fractal networks function of the parameter for different fractal lattices. The
embedded in different Euclidean dimensiahsFigure 3b) maximum ofG for each lattice takes place at the vakje,«
shows the saturation persistenee as a function ofe for at which the corresponding curve Bf, reaches a maximum.
GSG associated to different The discontinuities on each WhenG, is maximum the probability that there exist cells in
curve are related to the loss of stability of the configurationsone phase having all of their neighbors in the opposite phase
where one local element has a majority of its neighbors irat the first iteration is also maximum. Therefore, for the

€
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value of couplingenmay, there is a greater chance that at thedomain size decreases as’! Y/ in the fractals. This de-
next iteration such cells change phase instead of their neigleay is much faster than in regular Euclidean lattices and ac-
bors, yielding more stable domains with fewer elements otelerates with increasing domain size, forming stable sepa-
the network having to switch their initial phase. Conse-rated phase domains. As a consequence, domains always
quently, the persistence probability, which measures thgreeze on the fractal networks and the phase transition ob-
number of elements that have not changed phases, is maxXerved in the temporal behavior of the persistence in regular
mum at that time. Since the domains that are being formegtcligean lattices does not occur in fractals. Frozen domain
are the most stable, in successive times the persistence Wilhnfigurations and absence of this phase transition may also
sustain @ maximum value for the value of coupliggax e expected in similar models of coupled chaotic maps on

corresponding to each lattice. FeP epay the coupling i giher nonuniform lattices such as random graphs, small-
strong enough to induce transient changes in the phase Qforid networks. and scale-free networks.

elements having the majority .of their neighbors in that same |, summary, we have found that phase domains in chaotic
phase and, therefore, producing lower value® ot maps coupled on fractal networks always reach a frozen con-
The local effect captured by the quant, in fractal  figyration, causing the saturation of the persistence in time
lattices also appears in regular Euclidean lattices, althoughy; 4| values of the coupling parameter, in contrast to the
the asymptotic behavior of the persistence is different inyhase-transition behavior of the persistence observed in Eu-
those two network topologies. Figure 4 includes the calculagjigean regular lattices. The fractal nature of the spatial sup-
tion Of G, as a function ofe for a two-dimensional regular port is also reflected in the discontinuities observed inRthe
lattice; the maximum ofG, in this case 0CCUS @max  vs e curves in Fig. 3. The phase configurations of the local
=0.67. This is the critical value of the coupling parameterneighporhoods have similar transient manifestations in frac-
found in Ref.[10], after proper normalization, for the phase- ta] networks and in Euclidean regular lattices, as seen in the
ordering transition in the scaling behavior of the perS'Ste”C%mergence of a maximum @, at a value of coupling .
in a two-dimensional Euclidean lattice. A¢=0.67 the  However, the asymptotic and global properties of the phase
blocked states in the two-dimensional regular lattice 9IV€yrdering process on these two network topologies are quite
place to growing domains of the two phases, separated by @ferent, even when the number of local connections in the
continuous interface. The interface motion is driven by CUrneighborhood is the same, as it happens for the two-
vature effects that cause changes of phase in many elemenfgnensional Euclidean lattice and the GSG embedded in
of the system and, therefore, a temporal decay in the persis: 3. The necessary correlations between elements for build-
tence probabilityf 11]. In general, in regular Euclidean lat- jng complex collective dynamics are more likely to occur in
tices the ratio between the length of the interface to the sizg,e genser Euclidean lattices. These results suggest that the

. _1 . .
of a domain decays as *, wherer is the average radius of on0l0gy of the network and not the number of local connec-

the domain. On the other hand, in the fractal networks thgjons or the dimensionality of the space determine the
interface consists of a few disconnected cells separating 'argfsymptotic collective behaviors that may emerge on net-
domains, and no curvature can be defined. Because of thg, ks of coupled chaotic elements.

self-similarity of the structure the number of elements in a

domain grows as%=(d+1)', wherel is an integer, while This work was supported by Consejo de Desarrollo Cien-
the size of the interface is of the order af€ 1), indepen- tifico, Humanstico y Tecnolgico, Universidad de Los
dent of the domain sizes. Thus, the ratio of the interface t#\ndes, Meida, Venezuela.

[1] Chaos2, 279 (1992, focus issue on coupled map lattices, ed- [9] C. O’Hern, D. Egolf, and H.S. Greenside, Phys. Re\6%

ited by K. Kaneko. 3374(1996.
[2] M.G. Cosenza and R. Kapral, Cha#s99 (1994). [10] A. Lemaitre and H. ChatePhys. Rev. Lett82, 1140(1999.
[3] P.M. Gade, H. A Cerdeira, and R. Ramaswamy, Phys. Rev. E11] J. Kockelkoren, A. Lemaitre, and H. ChaRhysica A288, 326
52, 2478(1995. (2000.

[4] M.G. Cosenza and K. Tucci, Phys. Rev6E 026208(2001). [12] W. Wang, Z. Liu, and B. Hu, Phys. Rev. Le84, 2610(2000.
[5] D. Volchenkov, S. Sequeira, Ph. Blanchard, and M.G. Cosenzd,13] L. Angelini, M. Pellicoro, and S. Stramaglia, Phys. Lett285,

Stoch. Dyn.2, 203 (2002. 293 (200)).
[6] M.G. Cosenza and K. Tucci, Phys. Rev6hk, 036223(2002. [14] F. Schmser, W. Just, and H. Kantz, Phys. Rev.6E 3675
[7] S. Jalan and R.E. Amritkar, Phys. Rev. Le®0, 014101 (2000.

(2003. [15] B. Derrida, A.J. Bray, and C. Godreche, J. Phys2A 357
[8] J. Miller and D.A. Huse, Phys. Rev. 48, 2528(1993. (1994.

027202-4



