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Phase separation in coupled chaotic maps on fractal networks
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The phase ordering dynamics of coupled chaotic maps on fractal networks is investigated. The statistical
properties of the systems are characterized by means of the persistence probability of equivalent spin variables
that define the phases. The persistence saturates and phase domains freeze for all values of the coupling
parameter as a consequence of the fractal structure of the networks, in contrast to the phase transition behavior
previously observed in regular Euclidean lattices. Several discontinuities and other features found in the
saturation persistence curve as a function of the coupling are explained in terms of changes of stability of local
phase configurations on the fractals.
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Coupled map lattices have provided fruitful and comp
tationally efficient models for the study of a variety of d
namical processes in spatially distributed systems@1#. The
discrete-space character of coupled map systems makes
specially appropriate for the investigation of spatiotempo
dynamics on nonuniform or complex networks. Phenome
such as pattern formation, spatiotemporal intermittency, n
trivial collective behavior, synchronization, etc., have be
extensively studied in coupled map systems defined on f
tal lattices@2#, hierarchical structures@3#, trees@4#, random
graphs @5#, small-world networks@6#, and scale-free net
works @7#.

Recently, there has been much interest in the study of
phase-ordering properties of systems of coupled cha
maps and their relationship with the Ising models in stati
cal physics@8–14#. These works have invariably assum
the phase competition dynamics taking place on a unifo
Euclidean space; however, in many physical situations
medium that supports the dynamics can be nonuniform
some length scales. The nonuniformity may be due to
intrinsic heterogeneous nature of the substratum, such as
rous or fractured media, or it may arise from random flu
tuations in the medium. This paper investigates the phen
enon of phase ordering in coupled chaotic maps on fra
networks as a model for studying this phenomenon on n
uniform media. The class of fractal networks being cons
ered corresponds to generalized Sierpinski gaskets~GSG!
embedded in Euclidean spaces of arbitrary dimensiond @2#.
In particular, this model of coupled maps on fractal netwo
yields a situation to explore the role that the connectivity
the underlying lattice plays on the statistical properties
phase ordering processes in nonlinear coupled systems.

Deterministic fractal networks, such as GSG, can be g
erated in anyd-dimensional Euclidean space as follows@2#.
At the nth level of construction, the fractal consists ofN
5(d11)n d-dimensional hypertetrahedral cells whose co
dinates can be specified by a sequence (a1a2 . . . an), where
am can take any value in a set ofd11 different symbols
which can be chosen to be$0,1, . . . ,d%. At level n11, each
cell (a1a2 . . . an) splits into d11 cells scaled down by a
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longitudinal factor of 2, and which are now labeled b
(a1a2 . . . anan11), where the firstn symbols of the se-
quence are the same as the parent cell. Given this cons
tion rule, the fractal dimension of the GSG isdf5 log(d
11)/log 2. A label (a1a2 . . . an) can be written as
(a1a2 . . . an2san2s11

s ) for some sP$1,2, . . . ,n%, where
a i

s means the sequence ofs identical symbolsa i . The cell
with this label has a neighborhoodN(a1a2 . . . an) with d11

elements labeled by@a1 . . . an21(an1 j )# ( j 51,2, . . . ,d)
and (a1 . . . an2s11an2s

s ), where the additiona i1 j is de-
fined as modulo (d11). If s5n, then the cell is one of the
d11 vertices of the gasket, labeled by (a1

n), and it has only
d neighbors belonging to the same parent cell. An inte
index, i 50,1, . . . ,(d11)n21, can be assigned to each ce
of the lattice at the level of constructionn by the rule i
5(m51

n am(d11)n2m.
The equations describing the dynamics of the diffusiv

coupled map system defined on these fractal network
level of constructionn, embedded in ad-dimensional Euclid-
ean space, are

xt11~a1 . . . an!

5~12e! f „xt~a1 . . . an!…1
e

d11

3 (
(b1 . . . bn)PN(a1 . . . an)

f „xt~b1 . . . bn!…, ~1!

wherext(a1 . . . an) gives the state of the cell (a1 . . . an) at
discrete timet; (a1 . . . an) and (b1 . . . bn) label the (d
11)n cells on the gasket;e is a parameter measuring th
coupling strength between neighboring sites, andf (x) is a
nonlinear function that expresses the local dynamics. Eq
tion ~1! also applies to the (d11) vertex cells of the fracta
network, except that the coefficient of the sum ise/d, since
each of these cells haved neighbors.

As local dynamics, we assume a piecewise linear, o
map @10#
©2003 The American Physical Society02-1
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f ~x!5H 22m/32mx if xP@21,21/3#,

mx if xP@21/3,1/3#,

2m/32mx if xP@1/3,1#,

~2!

which for m53 becomes the chaotic map introduced
Miller and Huse@8#. When the parametermP@1,2#, the map
possesses two symmetric chaotic attractors contained in
intervalsI 65@6m(22m)/3,6m/3#, and separated by a ga
I o5@2m(22m)/3,m(22m)/3#. For values ofm close to 2,
the size of the chaotic intervals is larger than the gap. T
the local states have two well-defined symmetric phases
can be characterized by spin variables defined as the sig
the state at timet, s t(a1 . . . an)5sign@xt(a1 . . . an)#.

To study the phase-ordering phenomenon of the coup
maps on fractal networks, we fix the local map paramete
the valuem51.9 and set the initial condition as follows:
the number of cells (d11)n in a lattice is even (d odd!,
exactly one half of the sites are randomly chosen and
assigned random values uniformly distributed on the inter
I 1, while the other half are similarly assigned values onI 2.
If the number of cells in a lattice is odd (d even!, then the
state of the remaining cell is assigned at random on ei
interval I 1 or I 2.

The statistical properties of the phase-ordering proces
the fractal networks can be characterized by using the
sistence probabilityPt , defined as the fraction of cells tha
have not changed sign up to timet @15#. Figure 1 showsPt as
a function of time for the GSG embedded ind53, for sev-
eral values of the coupling parameter. For some ranges o
coupling, the persistence saturates in a few iterations, w
for some other ranges ofe, Pt reaches its saturation valu
more slowly. In contrast, in regular Euclidean lattices t
persistence saturates for small couplings, while it decays
gebraically in time for coupling strengths greater than so
critical value@10#.

FIG. 1. Persistence probability as a function of time for t
Sierpı́nski gasket embedded in Euclidean dimensiond53 for dif-
ferent values of the couplinge. The lattice size isN549. Dotted
curves correspond to values ofe for which Pt reaches its saturation
value quickly.
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The domains formed by the two phases on fractal latti
reach a frozen configuration for all values of the coupli
eP@0,1#. Figure 2 shows the asymptotic patterns of t
phase separation process on a GSG embedded ind53 at
level of constructionn53, for several values of the cou
pling. Note that the configuration of the blocked phase d
mains changes as the coupling is varied. The domain c
figurations can be characterized by the fraction of sites i
given phase that havek neighbors in that same phase at tim
t, denoted byFt(k), with k50,1, . . . ,d11. For example,
consider the pattern displayed in Fig. 2~a! where there are
several sites in one phase, as those indicated by arrows,
ing all of their four neighbors in the opposite phase. Th
the asymptotic fractionF`(0) is greater than 0 in this case
In Fig. 2~b!, ase increases,F`(0) becomes 0, butF`(1) is
finite, since there are sites in one phase, as those signale
arrows, having just one neighbor in that same phase.

The relationship between the asymptotic behavior of
persistence and the frozen domain configurations on frac
becomes manifest in Fig. 3~a!, which shows the saturation
value of the persistence,P` , as well as the fractionsF`(0),
F`(1), andF`(2) as functions of the coupling parameter f
the GSG embedded in Euclidean dimensiond53. Several
discontinuities are observed in the curve ofP` in Fig. 3~a!.
The first discontinuity ofP` occurs at the value of the cou
pling eo50.24 where the fractionF`(0) vanishes. This im-
plies that local blocked configurations where a site has
neighbors in its same phase, as those indicated in Fig. 2~a!,
become unstable at the value of couplingeo . The second
discontinuity of P` takes place at the value of couplin

FIG. 2. Phase separation on the GSG embedded in Euclid
dimensiond53 at a level of constructionn53, for several values
of the coupling. The dark~light! color corresponds to the positiv
~negative! phase. Arrows signal local configurations described
the text.~a! e50.20, ~b! e50.26, ~c! e50.36, ~d! e50.72.
2-2
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e150.30 whereF`(1) becomes 0, and it is related to the lo
of stability of local frozen domain configurations as tho
signaled in Fig. 2~b!. In addition,P` reaches a minimum a
the value of couplinge250.36, where the fractionF`(2)
decays to 0. Fore.e2, the domains of the two phases gro
in size, as seen in Figs. 2~c! and 2~d!. The phase domain
also form faster, reducing the number of phase switching
the elements and, therefore, producing an increment in
saturation valuesP` up to a maximum occurring atemax
50.72.

A similar behavior is observed for all the fractal networ
embedded in different Euclidean dimensionsd. Figure 3~b!
shows the saturation persistenceP` as a function ofe for
GSG associated to differentd. The discontinuities on eac
curve are related to the loss of stability of the configuratio
where one local element has a majority of its neighbors

FIG. 3. ~a! Left scale: saturation persistenceP` as a function of
e for the GSG embedded in Euclidean dimensiond53, represented
by the thick dark line. The valueseo ,e1 ,e2, andemax are indicated
by dotted vertical lines. Right scale: fractionFt(k) vs e. Circles,
F`(0); triangles, F`(1); squares,F`(2). The lattice size isN
549. ~b! P` as a function ofe for GSG embedded in differen
Euclidean dimensionsd. Continuous line:d52, N5311; dotted
line line: d55, N567; dashed line:d57, N586; circle line: d
511, N5125. The first discontinuity ateo50.24, common to all
lattices, is indicated.
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the opposite phase. The number of those configurationsJ
5nint@(d11)/2#, where nint(x) roundsx to its nearest inte-
ger. TheseJ discontinuities take place at increasing values
the couplingek for which the asymptotic fractionsF`(k)
vanish, withk,J. The first discontinuity is related to th
vanishing of the fractionF`(0) at the valueeo50.24, inde-
pendent of the embedding dimensiond. This independence is
due to the presence of the normalization factor (d11)21 in
the coupling term in Eq.~1! for all the lattices. For embed
ding dimensionsd odd, there occurs a minimum ofP` when
the fractionF`(J) becomes 0. In those cases the local co
figurations losing stability are those consisting of a site w
half of its neighbors in one phase and the other half in
opposite phase. These local configurations are symmetri
the sense that a change of phase of that site does not alte
phase composition of its neighborhood. These symme
configurations cannot happen in GSG associated tod even,
and for those networks the minimum ofP` coincides with
the last discontinuity that takes place whenF`(J21) van-
ishes.

Note that for each fractal lattice there is a value of t
coupling emax where a maximum ofP` is observed. The
origin of such maximum can be analyzed through the av
age fraction of neighboring pairs that have opposite phase
time t, defined as

Gt512
1

N~d11! (
i 51

N S (
j PNi

d„s t~ i !,s t~ j !…D , ~3!

where d„s t( i ),s t( j )…51 if s t( i )5s t( j ), and
d„s t( i ),s t( j )…50 otherwise. In Fig. 4 we showG1 as a
function of the parametere for different fractal lattices. The
maximum ofG1 for each lattice takes place at the valueemax
at which the corresponding curve ofP` reaches a maximum
WhenG1 is maximum the probability that there exist cells
one phase having all of their neighbors in the opposite ph
at the first iteration is also maximum. Therefore, for t

FIG. 4. G1 as a function ofe for GSG embedded in differentd.
Dashed line:d52; continuous line:d53; dotted line:d55; circle
line: d511. Sizes are the same as in Fig. 3. Dotted-dashed
representsG1 for a two-dimensional regular lattice (2D).
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value of couplingemax, there is a greater chance that at t
next iteration such cells change phase instead of their ne
bors, yielding more stable domains with fewer elements
the network having to switch their initial phase. Cons
quently, the persistence probability, which measures
number of elements that have not changed phases, is m
mum at that time. Since the domains that are being form
are the most stable, in successive times the persistence
sustain a maximum value for the value of couplingemax
corresponding to each lattice. Fore.emax the coupling is
strong enough to induce transient changes in the phas
elements having the majority of their neighbors in that sa
phase and, therefore, producing lower values ofP` .

The local effect captured by the quantityG1 in fractal
lattices also appears in regular Euclidean lattices, altho
the asymptotic behavior of the persistence is different
those two network topologies. Figure 4 includes the calcu
tion of G1 as a function ofe for a two-dimensional regula
lattice; the maximum ofG1 in this case occurs atemax
50.67. This is the critical value of the coupling parame
found in Ref.@10#, after proper normalization, for the phas
ordering transition in the scaling behavior of the persiste
in a two-dimensional Euclidean lattice. Ate50.67 the
blocked states in the two-dimensional regular lattice g
place to growing domains of the two phases, separated
continuous interface. The interface motion is driven by c
vature effects that cause changes of phase in many elem
of the system and, therefore, a temporal decay in the pe
tence probability@11#. In general, in regular Euclidean la
tices the ratio between the length of the interface to the
of a domain decays asr 21, wherer is the average radius o
the domain. On the other hand, in the fractal networks
interface consists of a few disconnected cells separating l
domains, and no curvature can be defined. Because o
self-similarity of the structure the number of elements in
domain grows asr df5(d11)l , wherel is an integer, while
the size of the interface is of the order of (d11), indepen-
dent of the domain sizes. Thus, the ratio of the interface
d-
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domain size decreases asr 2df ( l 21)/l in the fractals. This de-
cay is much faster than in regular Euclidean lattices and
celerates with increasing domain size, forming stable se
rated phase domains. As a consequence, domains al
freeze on the fractal networks and the phase transition
served in the temporal behavior of the persistence in reg
Euclidean lattices does not occur in fractals. Frozen dom
configurations and absence of this phase transition may
be expected in similar models of coupled chaotic maps
other nonuniform lattices such as random graphs, sm
world networks, and scale-free networks.

In summary, we have found that phase domains in cha
maps coupled on fractal networks always reach a frozen c
figuration, causing the saturation of the persistence in t
for all values of the coupling parameter, in contrast to t
phase-transition behavior of the persistence observed in
clidean regular lattices. The fractal nature of the spatial s
port is also reflected in the discontinuities observed in theP`

vs e curves in Fig. 3. The phase configurations of the lo
neighborhoods have similar transient manifestations in fr
tal networks and in Euclidean regular lattices, as seen in
emergence of a maximum ofG1 at a value of couplingemax.
However, the asymptotic and global properties of the ph
ordering process on these two network topologies are q
different, even when the number of local connections in
neighborhood is the same, as it happens for the tw
dimensional Euclidean lattice and the GSG embedded id
53. The necessary correlations between elements for bu
ing complex collective dynamics are more likely to occur
the denser Euclidean lattices. These results suggest tha
topology of the network and not the number of local conn
tions or the dimensionality of the space determine
asymptotic collective behaviors that may emerge on n
works of coupled chaotic elements.
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